试论教学活动中的学生立场
长久以来,教学常态是“老师教,学生学”,身为老师,我们考虑的是“教”的问题,常常在教学实际中忽略了“学生”这个学习的主体,没有考虑到“学”的问题。要改善教学,就必须从“以师为本”“以本(学科知识)为本”的角度转换到“以生为本”的角度,在教学活动中充分确立“学生立场”,从学生的角度来考量我们的教和学。
一、教什么,要体现学生立场
作为一名教师,在教学的过程中,应站在学生立场,而不是站在教师立场。笔者在多年的听课过程中,发现很多老师不考虑班上大多数学生是否能听懂,只是将教材某一章节的内容讲述一遍,或者将教学参考书上的内容照本宣科。我们的教学任务,应当将知识、技能教给学生,并使他们学会。
①全牙长: 沿牙体长轴从第一前磨牙牙尖(上颌为颊尖,下颌为舌尖)至根尖的垂直距离;②冠长:第一前磨牙牙尖(上颌为颊尖,下颌为舌尖)到颈缘釉牙骨质界最凸点的垂直距离;③根长:沿牙体长轴从根尖到唇面釉牙骨质界最低点的直线距离;④冠近远中径: 垂直于牙体长轴的牙齿近远中接触点间距;⑤冠唇(颊)舌径: 垂直于牙体长轴的牙齿唇舌面最突点间距;⑥颈近远中径:垂直于牙体长轴的近远中釉牙骨质界最高点间距;⑦颈唇(颊)舌径:垂直于牙体长轴的唇舌面釉牙骨质界最低点间距;⑧观察牙根数目、根管数目及根尖孔的开口位置,根尖孔到根尖顶点的距离,根尖孔开口方向及弯曲根管。
作为老师,在讲授新知识之前,要先介绍与其相关的知识进行铺垫,再引入新知识,使学生能够“拾阶而上”,也能将前后知识联系起来,这样的学习过程就显得流畅自然。
为突出所述方法的优越性,图6所示为主成分分析(Principle Component Analysis,PCA)方法对4种运行状态的分类结果,相对NCA方法存在着较高的误分率,说明了所述方法的优越性.
苏霍姆林斯基的《致女儿的信》(原人教版《语文》九年级上册选文)是一篇在教学上颇有争议的课文。笔者在教学这一课时,进行了这样的解读:如何向十四岁的女孩解释“什么是爱情”?作者通过转述一个童话故事,告诉自己十四岁的女儿爱情的特征,即力量、美、忠诚与心灵的追念,说明人类的爱情具有超越上帝的力量。作者巧妙地借用了童话故事这一形式,形象直观地解释了“什么是爱情”。因此要引导学生了解童话故事适合孩子阅读的原因:借助夸张的手法、奇妙的想象来阐释一个道理或激发某种情感。同时,也要引导学生明白童话故事是通过“变化”来推进故事情节、阐释道理的,“变化”就是故事的“线索”,引导学生通过“线索”来梳理叙事类文章的主要内容,提取主要信息,为深入理解文章的思想感情服务。
这里,笔者提炼出了以下教学内容:了解作者对人类爱情的特征的认识、说话要看对象、童话这一文体特点的再感受、以事情的发展变化为线索以及抓住这一线索提炼信息的方法、描述性语言在刻画人物形象上的作用。“什么是爱情”止于让学生了解,不作为初三语文教学的重点,其原因是对十几岁的缺乏生活阅历的孩子来说爱情中的“力量、美、忠诚与心灵的追念”是非常难以理解的内容,教了也是空洞的说教。
这些教学内容的确定有两个依据:一是课文自身所具有的内容,二是学生学习语文(获得阅读与表达能力)的需求。
二、怎么教,要体现学生立场
子曰:“不愤不启,不悱不发。举一隅不以三隅反,则不复也。”孔子认为,教师的教要建立在学生学的基础上。著名学者郭思乐也说:“教要归依学,让生命自己行动。”我们一直在提倡的生本教育有十六字方针:先做后学,先学后教,少教多学,以学定教。
在教学活动中,教师要从“组织教学”转向“组织学生的学习”,从“设计教学”转到“设计学习”,从“教学”转变为“帮学”。从“设计教”到“设计学”,是传统教学与生本教学的本质区别。比如,教学课文《驿路梨花》,可以设置这样的预习题:积累字词、学习叙事类作品略读的方法、理解在叙事时设置悬念的好处。这样,学生在进入课堂教学环节前已经进行了初步的学习活动。开展课堂教学时,首先对学生进行分组检测,检测学生对字词的学习情况,要求学生对照正确答案进行订正,各组派出代表开展听写竞赛,充分利用学生的“好胜心”,激活学生的竞争意识,激发学生互教互学的热情,提高学习效果,让学生的“学”真正得到落实。
病原为白粉菌,主要危害叶片、茎蔓、叶柄。发病初期,叶片上出现圆形小斑点病斑,后逐渐扩大为不规则形的白粉状霉斑,逐渐多个粉斑连接成整张叶片。发病叶片的细胞和组织被侵染后并不死亡,抹去病斑上的粉层,叶片表现为褪绿或变黄,发病后期病斑呈灰色或灰褐色,上有黑色的小粒点(即为病菌的闭囊壳),严重时整个植株被白色粉状霉层覆盖,后期白粉层变成白色,白粉层中出现先黄色、后变黑褐色的小粒点,发病末期病叶组织变为黄褐色而枯死。
这一活动的设计,充分调动了孩子自主学习的积极性,学习效果远远超过老师的“一言堂”。
1.读出下列各数,指出其中哪些是正数,哪些是负数。
为了避免叠合梁模板与支架之间的接缝处漏浆并提升其外部观感,可以在两者的连接处设置海绵条,并使用胶带加固。
笔者在对《致女儿的信》进行教学设计时,设计了这样的几个问题:
4.疑难摘录: 。
⒉研讨:根据课文内容,将文章的标题进行补充,思考其中蕴含的表达上的原则:
(2)课外阅读一篇叙事类文章,主要分析线索在我们获取文章主要信息中的作用以及描述性的语言在塑造形象上的作用。(教师推荐阅读郑渊洁的童话故事《最后一个鸡蛋》)
4)敷设时应特别注意对分支器及终端连接器的保护,先用封口袋把尾纤和终端连接器封起来再进行穿槽盒、进屏柜等工作。
(身份)苏霍姆林斯基给 (年龄)的女儿谈 (话题)的信。
⒊苏霍姆林斯基是通过什么方式跟他十四岁的女儿谈论“爱情”这一话题的?为什么?
⒋你从上述问题中悟出的表达原则是 。
⒌请你转述作者讲述的童话故事,思考:你准备抓住什么来厘清你转述的思路?
⒍通过比较,分析文章故事中的人物和现实中的人物的形象特点,引出描述的作用,并通过细致分析品味文章中的相关语句,体会运用描述性的语言在表现人物形象时的作用。
⒎拓展训练及检测:
下面是七年级上学期《正负数》这一节课的“学前准备”:
新时期,我国在积极展开小学数学教学的过程中,应注重对学生综合素质的全面培养。这就要求小学数学教师结合小学数学学习特点有针对性地采取教学策略,从根本上提升教学质量。
(1)练笔——描述两个闹别扭的同学的形象,一个大度,一个小气。
(4)具备通信设备故障诊断的功能,面对繁多的告警情形,排除无效告警信息,诊断出设备故障信息,及时制定最佳的设备保养和维修方案。
这些教学环节的设置,目的是给学生的学做好铺垫,以方便学生的学。
三、怎么练,要体现学生立场
教学的完整过程应当是“课前—课中—课后”。通常,我们给学生布置的是“课后作业”,而忽视了“课中作业”和“课后作业”的设置。而教师的“帮学”,很大程度体现在“前置性学习”的设计和规划上。
有了“课前作业”的设置,学生的“预习”就会有的放矢,学生的自主学习就会真正得以落实。须知,学生的自主学习能力并非凭空产生的,是在反复的不断的练习中形成的。因此,不仅“以学定教”决定了前置性作业的重要性,而且对学生自主学习能力的培养也决定了前置性作业的重要性。
体育和其它文化课程的区别是体育课是为了促进学生身心健康发展的辅助性课程,它的教学目的不是为了让学生取得高成绩,而是为了让学生拥有一个强健的体魄,所以体育课并没有很多死板的理论知识课程。但是传统体育教学方法只对跑跳等运动进行简单的训练,无法充分的激发起学生足够的体育热情。小学生由于心智还在萌芽发展时期,对很多事情都有着充足的好奇心但缺乏长久的耐性,小学体育游戏教学法将体育运动充分有效地融入到游戏之中,利用游戏的教学方法将枯燥的体育活动变得生动、有趣。在游戏中学生的天性和好奇心可以得到释放和满足,使小学体育教学朝着积极健康的方向不断发展。
【学前准备】
1.小学里学过哪些类型的数?请写出来: 、 、 。
2.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫作什么数?
3.阅读课本第2页的三幅图(边阅读边思考)并回答上面提出的问题。
⒈预习:找出信中苏霍姆林斯基同女儿探讨的话题及作者的观点。
通过一系列体制机制优化创新,湖南电信夯实了监督执纪基础,纪律监督、风纪监督、巡察监督以及派驻监督持续发力,形成具体明确、环环相扣的监督“责任链”和上下联动、合力攻坚的监督工作格局,企业风清气正的氛围不断巩固加强。湖南电信经营发展持续向好,规模与效益稳步提升,不仅连续多年完成集团公司下达的年度预算目标任务,成功实现V型反转,而且企业整体步入了健康、持续、良性发展的轨道,保持了稳健增长的态势。
从这份课前作业中,我们能深刻感受老师的良苦用心:先是帮助学生复习小学的知识,为学生进一步思考打下基础;进一步提出疑问,联系学生的生活经验,体现数学学习的“有用”和“必要”,激发学生的好奇心;最后引导学生回到课本上开展自主学习,还通过了解学生的疑问,充分了解学情,便于后续教学内容的确定。我相信,有了这样一份课前作业的设计,师生在《正负数》这一章的教学过程中一定会进行得顺畅而富有成效。
下面是这节课的“课堂检测”和“拓展延伸”:
【课堂检测】
多发性骨髓瘤尽管不能治愈,但通过规范化治疗,完全可实现长期生存的目标。多发性骨髓瘤的治疗新药近十年来不断涌现,临床治疗方案不断推陈出新,多发性骨髓瘤患者5年生存率已从过去的25%提高到了75%。“由于该疾病本身的特性,在患者中强化持续治疗的理念非常关键。”陈兵说,有的患者治疗1~2次后,自认为症状缓解了,就不治了。病情复发后,治疗反而更困难。
-2, 0.6,, 0, -3.1415, 200, -754200。
学习需要讲求方法,有了正确方法的指引,学习就会事半功倍。在对教师是否教授引导学生掌握多种预习的方法的问题上,很多教师并未认真地进行有效预习方法的引导。
2.举出几对(至少两对)具有相反意义的量,并分别用正、负数表示。
【拓展延伸】
1.写出比0小4的数,比4小2的数,比-4小2的数。
由式(2)可知,log2(fk(r)/ek(r))相当于是对规则覆盖样例个数fk(r)加的权值,它均衡了不同类之间的样例个数差异对规则的影响。较大的R值说明该规则作出正确预测数显著地大于随机猜测的结果。例如,由于r1覆盖45个样例,则正类的期望频数为e+(r1)=45×(80/180)=20,而负类的期望频数为e_(r1)=45×(100/180)=25。因此,r1的似然比为
2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
3.观察下面一列数,探求其规律: -1,2,-3,4,-5,6,…
(1)写出第7、8、9项的三个数。
(2)第2009个数是什么?
(3)如果这一列数无限地排列下去,第n个数是什么?
这份作业的指向性、层次性分明,既巩固了课堂上所学的知识,又将学生的思维引向纵深,作业的量也比较适中,充分考虑了学生的承受力和学习力。
总之,只有老师“目中有人”,真正站到学生的立场上去,我们的教学活动才有可能进行得有效,学生学习的负担才有可能减轻。