适用于卫星导航系统的双频段圆极化微带天线
0 引 言
随着导航技术的不断发展, 设备的可靠性、 定位的精确度都达到了新的水准, 多种导航系统兼容的工作模式有利于实现频率复用, 达到系统兼容的目的, 这就使得可工作于多频段的卫星导航天线优越性日益凸显[1-2]。 卫星导航系统对设备提出了小型化、 低剖面的要求, 微带天线凭借自身小且薄、 易集成等特点[3], 被广泛应用于卫星导航系统中。 圆极化天线的抗极化失配、 抗多径效应等特点也使其成为导航系统的首选极化形式[4]。
微带天线主要依靠单馈法、 多馈法和多元法来实现圆极化。 单馈法是最易实现的方式, 其结构简单、 加工便捷且成本低廉、 易于小型化设计, 在极化和带宽要求不高的情况下被广泛使用。 多馈法通过正交的馈电点激励简并模实现圆极化, 可以有效展宽圆极化带宽, 改善极化性能, 然而馈电网络的使用, 增加了设计难度和工艺复杂度。 多元法与多馈法原理一致, 均是依靠多个馈点之间产生相位差实现圆极化, 但多元法每个馈点对应一个辐射单元, 虽然减少了馈电网络, 降低了设计难度, 且圆极化性能更佳, 但多个辐射单元的使用极大地增加了天线尺寸[5]。
⑫Niessen,C.,Weseler,D.& Kostova,P.,“When and why do individuals craft their jobs?The role of individual motivation and work characteristics for job crafting”,Human Relations,2016,9(6),pp.1287 ~1313.
本文分别设计了单元形式以及阵列形式的双频段圆极化微带天线, 可同时在北斗卫星导航的B3频段和GPS的L1频段工作。 为了尽可能使结构紧凑, 减小剖面尺寸, 在设计中选择较高介电常数的介质基板并采用无空气层的层叠结构[6]。 最终, 单元形式天线的尺寸为55 mm×55 mm×6.654 mm, 阵列形式总体尺寸为160 mm×160 mm×4.114 mm, 仿真设计满足指标要求。
1 双频带圆极化微带天线单元
单片法和多片法是微带天线单元多频段工作的基本方法。 单片法利用贴片在不同模式下工作产生多频段, 但通常情况下这种方式得到频段的比值都大于1.5, 不适用于本次设计指标[7]。 贴片加载产生多个谐振频率也是单个贴片多频段工作的常见方式, 但是贴片加载产生几何结构上的不对称性又不利于天线圆极化性能的调节。 综上, 采用多片法, 利用多个不同尺寸的贴片产生各自的谐振频率来实现多频段工作。 由于单馈法驻波和轴比带宽较差, 为了满足在频带内的圆极化性能, 达到较好的性能, 且不增大天线的尺寸, 选用双馈法实现圆极化。
天线阵列中每个单元仍然使用前文的双点馈电方式, 由三层介质基板层叠, 第一层是辐射基板, 下面两层是功分网络, 制作中使用螺钉在单元四角将三层固定。 考虑尺寸的指标要求, L1频段仍然使用介电常数6.15的Rogers RT/duroid 6006, 为了进一步减小尺寸, B3频段使用介电常数10.2的Rogers RT/duroid 6010, 且去掉了周围调谐矩形的设计; 带状线功分器仍然使用Rogers RT/duroid 5880, 但厚度改为0.787 mm, 全部使用Rogers公司标准厚度的板材, 天线总厚度4.114 mm。 对各频段单元进行单独仿真, 性能达标后, 将其放入阵列, 考查其在阵列中工作情况。
为了减小馈电网络层在几何结构上的不对称性将对上层贴片的辐射方向产生的影响, 功分器使用带状线形式, 即两层介质基板中间为功分网络, 上层基板的顶层以及下层基板的底层为金属地。
秀容月明苦笑着说:“你请她都不来,我去请,她更不来。我出门一步,都有人跟着,就算把亲兵都打发走,像贺三媳妇那些人,也会跟过来看热闹。那样,还不如不去。”
图1 天线结构示意图
Fig.1 Schematic diagram of antenna structure
1.1 双层贴片的结构设计
贴片边长与微带天线的谐振频率成反比关系, 改变贴片尺寸是调节谐振频率的有效途径:
图5~6依次给出了1.268 GHz和1.59 GHz的辐射方向图和空间轴比分布, 可以看出天线有良好的圆极化性能。 对应的各频点3 dB波束宽度为106°和104°, 有着较宽的波束宽度。 各频点在上半辐射空间里, 仰角20°轴比小于6 dB, 满足空间轴比的分布要求。
1.3.2 排除标准 ①重症支气管炎与肺炎早期难以鉴别者;②麻疹、百日咳、流行性感冒等急性传染病;③急性上呼吸道感染、支气管哮喘、毛细支气管炎、支气管肺炎等其他呼吸道疾病应排除;④营养不良、免疫缺陷患儿;⑤合并严重心、肝、肾、消化及造血系统等严重原发病;⑥对试验用药物(包括对照药或基础用药)或其成分过敏者;⑦研究者认为不宜入组者。
双频带圆极化微带天线仿真结果见图4。 从图4(a)可以看出, 在要求的两个频段中驻波均在2以下, 中心频点驻波小于1.5, 表明了天线阻抗匹配良好。 图4(b)中, 两频段内的轴比全部都低于3 dB, 且在两个中心频点处的轴比均小于2, 满足一个性能良好的圆极化天线对轴比的普遍要求, 也反映了双馈法较好的极化性能。 由图4(c)对两个频段的增益对比可以看出, 高频段的增益比低频段高了1.8 dB左右, 这是因为高频段的天线波束更窄, 指向性更强。 由于高频段辐射贴片位于顶层, 相当于第一、 二层介质基板均为其辐射基板, 等效于加大了高频段辐射器介质基板的厚度, 因此展宽了高频段带宽, 图4(a)和图4(c)的结果也从侧面验证了这一理论[10]。
图2 矩形枝节的调谐作用
Fig.2 VSWR vs the length of a1
1.2 馈电网络的设计
本次设计使用双馈法实现圆极化。 选用端口匹配度好、 低损耗且隔离度高的威尔金森功分器在馈电点p1, p2输出两路幅度一致、 相位相差90°的激励, 通过探针对天线进行馈电(如图3所示)。 通过两个长度相差λ/4的传输线来产生幅度一致、 相位相差90°的输出端, 并通过100 Ω隔离电阻的使用, 增加端口间的隔离度。
图3 功分网络示意图
Fig.3 The feeding network of dual-band antenna
综合圆极化、 双频带以及小型化的需求, 使用双馈点的层叠结构实现。 天线结构如图1所示, 共四层介质基板组成, 采用同轴探针底馈形式馈电。 由上至下, 第一、 二层是天线辐射层, 使用介电常数较高的Rogers RT/duroid 6006为介质基板, 对上下两层贴片的尺寸进行调节, 分别控制两频段的谐振频率。 为使天线结构紧凑, 尽量减小剖面尺寸, 上下两层介质板紧密贴合, 中间未加入空气层[8]。 第三、 四层是天线的馈电网络, 使用介电常数为2.2的Rogers RT/duroid 5880。 为了避免馈电网络的寄生辐射对上层贴片产生影响, 馈电网络采用带状线设计。
1.3 仿真结果
使用上层贴片用来调谐GPS-L1频段, 下层贴片用来调谐北斗-B3频段。 上下两层贴片通过探针穿过介质基板进行馈电。 探针由功分器底部引出, 经通孔穿过两层介质基板, 达到上层介质基板顶部, 下层贴片需要开隔离过孔防止与探针相连引起短路[9]。 由于上下两层辐射单元使用相同的介质基板, 而下层的是低频段, 从而确定下层的尺寸较大, 故在上层贴片天线工作时, 下层贴片相当于它的金属地。 实际加工过程中, 由于加工误差以及装配等因素, 不可避免地会对谐振频率产生少许影响, 位于贴片四边的矩形枝节可以对谐振点进行微调, 找到性能最佳点。 以上层贴片为例, 微调a1, 可调整谐振点, 如图2所示。 同理可用于下层贴片调谐。
图4 双频带圆极化微带天线仿真结果
Fig.4 Simulation results of dual-band circularly polarized microstrip antenna
其中: f为频率; c为光速; L为贴片长度; Δl为边缘效应引起的延伸长度; εr为相对介质基板的介电常数。
图5 1.268 GHz方向图和空间轴比分布
Fig.5 Radiation pattern and axial ratio for the designed antenna at 1.268 GHz
图6 1.59 GHz方向图和空间轴比分布
Fig.6 Radiation pattern and axial ratio for the designed antenna at 1.59 GHz
2 双频带圆极化微带天线阵列
一整天,念蓉心神不宁。那个女人的脸在她面前晃来晃去,又顽强地钻进她的脑子,撕扯她的神经。一天里陆清浅过来三次,一次让念蓉将那三篇稿子排出次序,一次问半烟的插图画好了没有,一次问念蓉和半烟还有没有茶叶。半烟冲念蓉笑道:“他不放心你呢。”
2.1 天线阵列结构设计
天线阵列总体结构如图7(a)所示, 周围四个单元工作于B3频段, 中心单元工作于L1频段, 单元间距100 mm(0.42λ), 地板边长160 mm。 为了获得更好的圆极化性能, 对周围四个低频段单元进行等幅不同相激励, 单元间相位差依次为90°, 定义与中心单元同相的为低频段1单元, 各单元极化方向如图7(b)所示。 对阵列进行仿真, 由于天线间的互耦以及地板的变化, 阵中单元与单个单元辐射特性会有差异, 为了得到较好的性能和单元一致性, 需要对单元进行微调。
1.2.2 泸州地区酱香型新鲜酒糟的养分特征。试验用酒糟来自郎酒集团酱香型酒糟,酒糟的主要成分为稻壳和高粱。对酒糟进行酸碱度、干物质、粗脂肪、粗蛋白及氨基酸含量的测定,测定结果:pH 4.4±0.1,干物质(90.3±0.2)%,粗脂肪(7.0±0.1)%,粗蛋白(26.6±0.2)%,氨基酸总量(28.5±0.2)%。
图7 天线阵列整体示意图
Fig.7 The schematic diagram of antenna array
2.2 天线阵列仿真结果
图8为B3频段阵中各单元单独工作时仿真结果, 从图中可以看出四个单元一致性较好。 四个单元同时激励时仿真结果如图9所示, 与单元单独工作时相比, 此时的轴比明显降低(小于0.03 dB), 有良好的圆极化工作性能, 最大增益为8.3 dB, 比单个单元大5.8 dB, 相当于单个单元的将近4倍, 单元间耦合小于-17 dB。 图10为L1频段阵中单元仿真结果。
2.3 天线阵列的加工与实测结果
对微带天线五元阵的加工实物如图11所示。 带状线功分器上下两层介质基板与辐射层介质基板之间通过M2螺钉固定, 铝基板尺寸160 mm×160 mm。 接头采用烧结形式的MCX接头, 配合SMA/MCX-KJ接头测试。 在测试时, 一个单元工作时, 将其他四个单元的端口接50 Ω匹配负载。
图8 B3频段阵中单元仿真结果
Fig.8 The simulation results of the unit in B3-band
图9 B3频段四个单元同时工作仿真结果
Fig.9 The simulation results of four units of B3-band at the same time
图10 L1频段阵中单元仿真结果
Fig.10 The simulation results of the unit in L1-band
图11 天线阵列加工实物
Fig.11 Real product of antenna array
B3频段阵中单元测试结果如图12所示。 L1频段阵列中单元测试结果如图13所示。 从测试结果来看, 驻波在1.8以下, 但是单元间不一致性很差, 且各单元均产生频偏。 轴比和方向图与仿真结果基本一致。 四个单元增益大小与仿真值基本一致, 但是产生了较大频偏, 且第二个单元增益最大值并不在天顶方向, 仿真与实物出现较大偏差。 产生误差的原因除了加工公差以外, 还因为在装配时三层介质基板之间使用螺钉固定, 必然会产生空气间隙, 引起相对介电常数不一致。
图12 B3频段阵中单元测试结果
Fig.12 The measured results of the unit in B3-band
由实测结果表明, GPS-L1频段内驻波在1.5以下, 但产生一定频偏。 受装配方式、 测试环境的限制, 增益较仿真结果有所下降, 轴比在高频区间有较大恶化, 但仍然在6 dB以下。
图13 L1频段阵中单元测试结果
Fig.13 The measured results of the unit in L1-band
3 结 论
本文设计的两种适用于卫星导航的圆极化双频段微带天线, 可同时兼容北斗卫星导航系统以及GPS卫星导航系统。 一种是以单元的形式实现, 使用层叠结构, 通过控制两层辐射贴片的尺寸使天线在双频段产生谐振。 另一种通过阵列的形式实现, 中间单元和周围四个单元分别工作于两个频段。 单元和阵列两种形式均通过威尔金森带状线功分器实现双馈点馈电, 得到的圆极化性能良好。 经过仿真分析符合指标要求后, 对天线阵列进行了实物加工和测试工作。 经实测, 各单元驻波在2以下, 但有一定频偏, 低频段增益基本与仿真结果一致, 且两个频段内的轴比均较仿真有所恶化。 除加工公差、 测试环境的影响外, 板材电性能不好以及各层间螺钉固定的装配方式也是引起误差的主要因素。
我们将语言课程又分成了单词,语法,语音,阅读,能力考这五部分,如图所示语音这一部分占比最大约55%,其次是语法约21%,单词10%。语音部分中外教课程相对颇受欢迎,从此可以看出,相较于单词语法,语言学习者对于语音尤其是纯正语音的需求比较大,同时也反映了目前线下教育现状中对于外语语言环境氛围的营造不足以及正宗外语资源的紧缺等问题。另外,语音课程中作为入门基础的五十音图的课程播放量达到上万次远超于其他课程,由此可知CCtalk的主要受益用户应为初中级日语学习者,他们对于入门知识需求量更大。
参考文献:
[1] Wang J J H.Antennas for Global Navigation Satellite System (GNSS)[J]. Proceedings of IEEE, 2012, 100(7): 2349-2355.
[2] Zheng L, Gao S. Compact Dual-Band Printed Square Quadrifilar Helix Antenna for Global Navigation Satellite System Receivers[J]. Microwave and Optical Technology Letters, 2011, 53(5): 993-997.
[3] 谭述森. 北斗卫星导航系统的发展与思考[J].宇航学报, 2008, 29(2): 391-396.
Tan Shusen. Development and Thought of Compass Navigation Satellite System[J].Journal of Astronautics, 2008, 29(2): 391-396.(in Chinese)
[4] 薛睿峰, 钟顺时. 微带天线圆极化技术概述与进展[J].电波科学学报, 2002, 17(4): 331-336.
Xue Ruifeng, Zhong Shunshi. Survey and Progress in Circular Polarization Technology of Microstrip Antennas[J]. Chinese Journal of Radio Science, 2002, 17(4): 331-336.(in Chinese)
[5] 韩庆文, 易念学, 李忠诚, 等. 圆极化微带天线的设计与实现[J]. 重庆大学学报(自然科学版), 2004, 27(4): 57-60, 92.
Han Qingwen, Yi Nianxue, Li Zhongcheng, et al. Design and Realization of Circular Polarization Microstrip Antenna[J]. Journal of Chongqing University(Natural Science Edition), 2004, 27(4): 57-60, 92. (in Chinese)
[6] 岳月华. 高介电常数材料缩小GPS&Wifi Combo天线体积[J]. 信息系统工程, 2011(10): 40-41.
Yue Yuehua. Reduction of GPS & Wifi Combo Antenna Volume by High Dielectric Constant Materials[J]. Information System Engineering, 2011(10): 40-41.(in Chinese)
[7] 陈世甲. 导航系统中圆极化天线的设计[D]. 大连: 大连海事大学, 2011.
Chen Shijia. The Design of Circular Polarized Antenna in Navigation System[J]. Dalian: Dalian Maritime University, 2011.(in Chinese)
[8] Pozar D M, Duffy S M.A Dual-Band Circularly Polarized Aperture-Coupled Stacked Microstrip Antenna for Global Positioning Satellite[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(11): 1618-1625.
[9] Wang Zhongbao, Fang Shaojun, Fu Shiqiang, et al.Dual-Band Probe-Fed Stacked Patch Antenna for GNSS Applications[J].IEEE Antennas and Wireless Propagation Letters, 2009, 8(4): 100-103.
[10] Khalily M, Rahim M K A, Kamarudin M R, et al. Ultra Wideband Printed Monopole Antenna with Dual-Band Circular Polarization[C]∥Proceedings of the 5th European Conference on Antennas and Propagation, Rome, Italy, 2001.