功能性有机/无机杂化纳滤膜的研究进展
目前,纳滤膜已经被广泛应用于海水淡化[1]、工业废水处理[2]、饮用水净化[3]、生物制药技术以及食品科学等领域.与传统的分离纯化技术相比,纳滤膜纯化分离技术具有节能、高效和操作简单等优点[4].纳滤膜按材料可分为有机纳滤膜和无机纳滤膜.有机高分子膜柔韧性好、透气性高、密度低、成膜性好且价格低廉等,但其机械强度、耐溶剂、耐腐蚀和耐热性较差.而无机纳滤膜具有机械强度高、耐腐蚀、耐溶剂、耐高温等优点,但其质脆,不易加工,成膜性差,且目前成本较贵[5].由于实际分离体系的复杂性,往往需要纳滤膜具备抗污染、抗氧化、耐酸碱、或耐高压等特性.近年来,由于无机纳米材料的表面、体积、量子尺寸和宏观量子隧道效应,在化学、力学、热学、光学和电磁学等方面表现出特殊的性能,因此,将有机高分子与无机纳米材料进行有效复合,制备同时兼具有机高分子和无机纳米材料性质的功能性有机/无机杂化复合纳滤膜,有望成为纳滤膜材料研究的新方向和趋势[6].
洋山港四期码头位于小洋山岛链最西端的大、小乌龟岛与颗珠山岛之间的填筑区,与洋山港二期工程相隔颗珠山汊道。洋山港四期工程设计水深为14.5 m,占用岸线2 800 m,码头走向106°~286°,设计年集装箱吞吐量400万TEU。拟建工作船码头和7个5万~7万吨级泊位、并考虑为远期发展适当留有余地,将15万吨级集装箱船作为水工结构兼靠船型。[2]预计开港后挂靠洋山港区四期集装箱泊位的远洋集装箱船型将以5万吨级、7万吨级和10万吨级的船舶为主。洋山港水域平面布置见图1。
强台风“菲特”来袭时,正值国庆长假,很多干部外出休假,给防台工作带来诸多不利因素。为此,5日晚上市领导连夜专题研究部署,果断作出 “各级领导干部以及各级防汛指挥部成员单位、乡镇 (街道办事处)全体干部职工,立即停止休假、立即进岗到位”的决策部署,各级纪检监察部门立即跟进,对干部到位情况进行专项督察。按照市委、市政府部署要求,从6日上午开始,各级领导干部取消国庆休假,立即进岗到位,在整个防台抗台期间没有发现干部擅离职守的情况。正是由于各级党员干部以最快的速度进入防台阵地,确保了各项防台责任落实到位、措施落实到位,确保了整个防台抢险救灾工作有序有力有效。
迄今为止,Ag、TiO2、SiO2、碳纳米管(CNTs)、氧化石墨烯(GO)和金属有机骨架材料(MOFs)等常见的无机纳米材料,均被广泛应用于功能性有机/无机杂化复合纳滤膜的制备.根据膜的功能特性,主要可以分为:抗污染、抗氧化、耐有机溶剂、耐酸碱、和耐高压有机/无机杂化复合纳滤膜[7-10].本文综述了各类功能性有机/无机杂化纳滤膜的研究进展,为制备和选择特种应用的杂化纳滤膜提供依据.
1 抗污染有机/无机杂化复合纳滤膜
1.1 抗微生物污染
目前,关于抗微生物污染有机/无机杂化复合纳滤膜的研究,主要是基于纳米Ag的抗菌性.单质Ag在水溶液中能够缓慢释放出Ag+,Ag+在低浓度下即可破坏细菌细胞膜或强烈地吸引细菌体中酶蛋白的巯基,并迅速结合在一起,降低病原体代谢酶的活性,从而具有抗菌作用[11-12].因此,水溶液中Ag+的浓度和释放速率是影响其抗菌性能的重要指标.同时,有机高分子膜与无机纳米材料之间的复合方法也会对其抗菌性能产生影响.如,Lee等[13]通过界面聚合法将纳米Ag与聚酰胺(PA)复合,纳米Ag可同时均匀嵌入到PA活性层内和修饰在其表面,未影响膜脱盐性能.SEM观察结果显示,该膜能有效抑制假单胞细菌在其表面生长繁殖.Maheswari等[14]则采用相转化法将纳米Ag包埋入聚醚砜(PES)中,该膜对大肠杆菌和金黄色葡萄球菌均有抑菌活性,且抑菌活性随纳米Ag含量的增加而提高.而Liu等[15]采用层层自组装法在聚丙烯腈膜表面复合纳米Ag,并考察了层层自组装工艺对膜抗菌性能的影响.在最佳工艺条件下该膜对枯草杆菌和大肠杆菌的抗菌活性分别可达90.8%和87.6%.Zhang等[16]则在NF90-PVA表面原位修饰纳米Ag,NF90-PVA膜表面的Ag可以保持0.1 μg/(cm2·d)的Ag+释放速率,能长效抑制大肠杆菌在膜表面的生长繁殖.
有机高分子纳滤膜的氧化降解,主要是因为自来水中含有一定浓度的Cl2和NaClO,尤其是对PA类纳滤膜氧化降解较为严重[41].PA类纳滤膜的氧化降解机制,主要包括:酰胺的氧化(如图1所示)[42]和芳香环的氧化(如图2所示)[43].因此,Hu等[44]将氟化聚酰胺修饰的SiO2与PA/PES复合,氟化聚酰胺修饰的SiO2具有很强的吸电子基团,对PA分子上的酰胺键起保护作用,从而保护酰胺键不会因为Cl2或ClO-的进攻失去电子而被氧化降解,该膜在浓度高达5 g/L的NaClO溶液中仍然能够保持稳定的分离性能.此外,Li等[45]则将ZnO与PA/PSf复合,由于ZnO中的Zn原子具有一定的吸电子能力,同样可以保护酰胺键不受Cl2或ClO-的破坏,该膜则只对低浓度的NaClO表现出较好的抗氧化性能,在0.1 g/L的NaClO溶液中运行120 h,膜分离性能基本保持不变.
1.2 抗有机物污染
PA活性层是通过胺分子与酰氯分子之间的缩聚反应生成,该反应是在常温下即可自发快速进行的放热可逆反应.在强酸/碱性条件下,酰胺键容易在高浓度的H+/OH-离子作用下水解生成—NH3+/—COOH,从而导致膜结构受损,分离性能下降.针对以上问题,Wu等[53]将MWCNTs—COOH与PA/PSf复合,该膜分别在强酸和强碱溶液处理后脱盐性能无明显下降,MWCNTs—COOH表面的—COOH对H+/OH-离子具有一定的缓冲作用.而Akbari等[54]则将TiO2与磺化聚砜/聚砜复合.该膜在强酸和强碱体系中也表现出稳定的分离性能,其稳定性的提高可能与TiO2纳米颗粒本身的光学活性有关.TiO2在吸收了波长小于或等于387.5 nm 的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成·O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的·OH,反应生成的原子氧、氢氧自由基都有很强的化学活性,对H+/OH-离子具有缓冲作用.
2 抗氧化有机/无机杂化复合纳滤膜
含Ag有机/无机杂化复合纳滤膜的抗菌性能,不仅与Ag+浓度和释放速率有关,而且与纳米Ag的属性种类(如:化学Ag和生物Ag)、形貌、尺寸以及在有机高分子膜中的分布等因素有关.Andrade等[17]在相转化法制备聚砜(PSf)膜过程中分别采用原位法和非原位法复合纳米Ag.采用非原位法复合的Ag为38 nm的纳米球,主要分布在PSf膜指状孔内表面;而采用原位法复合的Ag为45 nm的纳米立方颗粒,主要分布在PSf膜致密层或疏松层外表面.该研究探讨了纳米Ag的形貌、尺寸和膜内分布对抗菌性能的影响.实验结果表明,将纳米Ag复合到膜表面,有利于Ag+释放并在膜表面实现杀菌和抑菌过程,具有更好的抗菌效果.类似地,Liu等[18]则考察了生物质Ag和化学质Ag对PA/ PSf复合纳滤膜抗菌性能的影响.两种杂化膜均对绿脓杆菌和大肠杆菌表现出很好的抑菌效果,而修饰生物质Ag的PA/PSf膜具有更长效、稳定的抗菌效果,在纯净水中浸泡50天后膜表面纳米Ag剩余量为95%,浸泡4个月后脱盐率仍大于90%.虽然,含Ag有机/无机杂化复合纳滤膜具有很好的抗菌性能,但是水体中Ag和Ag+的回收利用较为困难,且Ag的成本较高.因此,亟待寻找一种新的抗菌纳米材料用于抗微生物污染有机/无机杂化复合纳滤膜的制备.
图1 酰胺的氧化机理Fig.1 The oxidation mechanism of amide group
图2 芳香环的氧化机理Fig.2 The oxidation mechanism of aromatic ring
3 耐有机溶剂有机/无机杂化复合纳滤膜
根据相似相溶的原理,有机高分子膜在有机溶剂中容易吸收有机溶剂而膨胀或溶解,在有机高分子膜中复合适量的无机纳米材料,可以充分利用无机纳米材料与有机溶剂之间不相容性质,提高纳滤膜的耐有机溶剂性能.Soroko等[46]首次将TiO2与聚酰亚胺(PI)复合,随着TiO2量的增加,膜表面亲水性逐渐增强,该膜在二甲基甲酰胺(DMF)和酒精中的稳定性增强,进行了耐有机溶剂有机/无机杂化复合纳滤膜的研究.研究表明,杂化膜在有机溶剂中的稳定性与膜表面亲水性有关.例如,Ding等[47]将GO和聚多巴胺(PDA)与PA/PAN复合,随着GO量的增加,膜表面亲水性逐渐增强,耐有机溶剂溶胀/溶解的性能则先增强后逐渐减弱,当GO质量分数为3.0%时性能最佳,该膜在丙酮、乙醇、乙酸乙酯和正己烷溶剂中浸泡48 h,膜分离性能保持稳定.Basu等[48]则分别将金属有机骨架材料MOFs[Cu3(BTC)2], MIL-47, MIL-53(Al)和ZIF-8]与PI复合,该3种杂化膜均对有机溶剂具有很好的抗溶胀性能,在膜表面使用N-甲基三甲基硅三氟乙酰胺(MSTFA)进行甲基硅烷化处理,进一步提高了杂化膜对PDMS的耐溶胀性能.基于以上研究,Echaide-Górriz[49]和Sorribas等[50]也分别用MOFs复合得到了耐甲醇和DMF溶剂的杂化纳滤膜.而Lu等[51]则将聚吡咯-氧化石墨烯(PPy-GO)与聚丙烯腈(PAN)复合,该膜对甲醇、乙醇和异丙醇均有很好耐溶胀性能,GO-PPy/PAN膜不仅提高了膜渗透通量,且该膜在有机溶剂中连续稳定运行100 h以上.进一步地,Peyravi等[52]分别将亚硫酰氯、单乙醇胺和三亚乙基四胺修饰的TiO2与PI复合,三种杂化膜表面亲水性均减弱,粗糙度增加,改性后的杂化膜在甲醇溶剂中的膨胀系数较小,该研究认为,粗糙度也会在一定程度上影响杂化膜的耐有机溶剂性能.
工程项目竣工结算审计是对基本建设项目竣工结算编制,及有关经济活动的真实性、合法性、效益性进行审计监督和评价的过程,工程审计是工程造价控制的重要环节,是提高建筑项目管理水平的内在动力,是工程建设项目资金真实性、合法性、效益性的重要保障。
4 耐酸碱有机/无机杂化复合纳滤膜
Mansourpanah等[19]首次将表面修饰TiO2的PA/PES膜用于抗牛血清蛋白(BSA)污染,有效减缓了膜渗透通量随BSA过滤时间延长而下降的速率.目前,关于抗有机物污染有机/无机杂化复合纳滤膜的研究,主要是针对BSA和腐殖酸(HA)而言.由于BSA和HA表面均带有少量的负电荷,所以BSA和HA在膜表面的吸附污染过程主要是静电吸引作用.将适量的TiO2[20-26]、SiO2[27-30]和GO[21, 23, 31-32]这类亲水性无机纳米材料及其亲水基团修饰的衍生物与有机高分子膜复合,有利于膜表面亲水性的提高和粗糙度的减小.而CNTs这类疏水性的无机纳米材料,可对其表面进行亲水基团修饰改性后再与有机高分子膜复合,同样可以提高膜表面亲水性和减小其粗糙度[33-39].而Madaeni等[40]先后将MWCNTs和聚二甲基硅氧烷(PDMS)嵌入聚偏氟乙烯(PVDF)膜孔径中得到超疏水杂化复合纳滤膜,结果表明,该膜表面粗糙度越大,疏水性越强,抗BSA污染效果越好.该研究认为,制备超疏水表面也可提高膜抗有机物污染性能.这些研究表明,在其他条件相同的情况下,膜表面所带负电荷越多,粗糙度越小,亲水性越好,抗有机物污染性能越好.
5 耐高压有机/无机杂化复合纳滤膜
有机高分子材料质软,在高压作用下容易发生形变破损.孟等[55]研究发现,在相同的填充条件下,无机纳米材料的力学性能高于普通填料的填充体系,即无机纳米材料的填充改性效果更好,改性效率更高.因此,无机纳米材料在提高有机高分子材料的力学性能方面得到了广泛的应用,常用的刚性无机纳米材料有SiO2[56]、CaCO3[57]、凹凸棒土[58]、Al2O3和TiO2等.基于GO超薄二维层状结构,Wei等[59]将褶皱状的GO与PSf复合.SEM观察到该膜在1.0 MPa高压下的二维和三维结构均无明显变化,具有耐高压特性.此后,Wang等[60]将GO与羧甲基壳聚糖/聚砜复合,同样得到了机械性能优良的杂化膜.在1.5 MPa高压下该膜对Na2SO4盐溶液的截留率为93.7%,分离性能稳定,适用于高压条件下运行.
6 多功能性有机/无机杂化复合纳滤膜
在实际应用中,分离体系往往具有强酸/碱性、强氧化性并含有机溶剂等特征,适用于复杂体系的多功能性有机/无机杂化复合纳滤膜的研究备受关注.基于此需求,Rajesh等[61]将TiO2与PI/PSf复合.该膜在pH=4.0的条件下,不仅对BSA具有很好的抗污染性能,而且对2 g/L的高浓度NaClO具有抗氧化作用.此后,Namvar-Mahboub等[62]将3-氨丙基二乙氧基甲基硅烷修饰的SiO2与聚醚酰亚胺复合.该膜不仅对丁酮/甲苯具有很好的抗溶胀作用,且适用于2.0 MPa高压条件下使用.Yang等[63]则将聚间苯二甲酰间苯二胺(PMIA)与GO复合.随着GO量的增加,亲水性先增强后逐渐降低.该膜不仅具有很好的抗BSA污染性能,同时对极端pH值稳定.再者,Bano、Vatanpour和Wang等分别用GO[64-65]和SiO2[66]与有机高分子膜复合,制备了对BSA和HA均具有优良抗污染性能的杂化膜.
7 结语
有机/无机杂化复合纳滤膜作为一种新型的纳滤分离膜,正逐渐成为纳滤膜材料研究领域的热点.目前,关于功能性有机/无机杂化复合纳滤膜的研究报道还比较少,其中研究较多的主要是抗污染和耐有机溶剂有机/无机杂化复合纳滤膜,不管是在膜材料的选择还是在其抗污染机理研究上都比较透彻清晰.其他功能性有机/无机杂化复合纳滤膜的研究报道则相对较少,虽然纳滤膜的氧化、水解和形变破损等作用机理的理论研究已经较为透彻,但目前可用于制备抗氧化、耐酸碱和耐高压有机/无机杂化复合纳滤膜的无机纳米材料较少.此外,性能单一的有机/无机杂化复合纳滤膜,必然不能满足实际生产中海水、工业废水和生活污水等复杂体系的分离要求,因此很有必要对具有广适性的多功能有机/无机杂化复合纳滤膜进行更加深入的研究.所以,未来关于功能性有机/无机杂化复合纳滤膜的研究:一方面,应该着力于寻找更多可用于制备功能性有机/无机杂化复合纳滤膜的无机纳米材料;另一方面,则应该更加深入地研究多功能有机/无机杂化复合纳滤膜的制备、作用机理和应用.
参考文献:
[1] 张继军,袁俊生. 海水脱钙技术研究进展及发展趋势[J]. 现代化工. 2013,33(3):38-41.
[2] 姜雨薇,冉艳红. 纳滤膜技术在废水处理中的应用与发展趋势[J]. 现代化工. 2011,31(2):25-28.
[3] 毕 飞,陈欢林,高从堦. 纳滤膜去除饮用水中微量有机物的研究进展[J]. 现代化工. 2011,31(7):21-28.
[4] Zhang Y, Tian M, Xu K. Current development of membrane separation technology[J]. Mod Chem Ind, 2017,37(4):6-10.
[5] 梁 希,李建明,陈 志,等. 新型纳滤膜材料研究进展[J]. 过滤与分离. 2006,16(5):18-21.
[6] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination. 2015,356:226-254.
[7] Gorgojo P, Siddique H, Livingston A G. Hybrid organic-inorganic membranes for organic solvent nanofiltration[J]. Proc Eng, 2012, 44: 96-99.
[8] Zhang Y, Guo M, Pan G Y, et al. Preparation and properties of novel pH-stable TFC membrane based on organic-inorganic hybrid composite materials for nanofiltration[J]. J Membr Sci, 2015,476:500-507.
[9] Zhang Y, Guo M, Yan H, et al. Novel organic-inorganic hybrid composite membranes for nanofiltration of acid and alkaline media[J]. RSC Adv, 2014,4:57522-57528.
[10] 张秋根,陈建华,周国波,等. 填充型有机/无机杂化分离膜研究进展[J]. 现代化工. 2006,26(7):22-26.
[11] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. J Nanopart Res, 2010,12(5):1531-1551.
[12] Jung W K, Koo H C, Kim K W, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli[J]. Appl Environ Microbiol, 2008,74(7):2171-2178.
[13] Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties[J]. Polym Adv Technol, 2007,18(7):562-568.
[14] Maheswari P, Prasannadevi D, Mohan D. Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes[J]. High Perf Polym, 2013,25(2):174-187.
[15] Liu X, Qi S R, Li Y, et al. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly[J]. Water Res, 2013,47(9):3081-3092.
[16] Zhang Y, Wan Y, Shi Y T, et al. Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling[J]. J Polym Res, 2016,23(5):9.
[17] Andrade P F, Faria A F, Oliveira S R, et al. Goncalves M D. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles[J]. Water Res, 2015,81:333-342.
[18] Liu S S, Fang F, Wu J J, et al. The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles[J]. Desalination, 2015,375:121-128.
[19] Mansourpanah Y, Madaeni S S, Rahimpour A, et al.Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant capability[J]. J Membr Sci, 2009,330(1/2):297-306.
[20] Pereira V R, Isloor A M, Bhat U K, et al. Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal[J]. RSC Adv, 2015,5:53874-53885.
[21] Wang J, Wang Y M, Zhu J Y, et al. Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance[J]. J Membr Sci, 2017,533:279-288.
[22] Safarpour M, Vatanpour V, Khataee A, et al. Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2[J]. Sep Purif Technol, 2015,154:96-107.
[23] Safarpour M, Vatanpour V, Khataee A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance[J]. Desalination, 2016,393:65-78.
[24] Rajesh S, Senthilkumar S, Jayalakshmi A, et al. Preparation and performance evaluation of poly (amide-imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances[J]. Colloids Surf a-Physicochem Eng Asp, 2013,418:92-104.
[25] Mo J, Son S H, Jegal J, et al. Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface[J]. J Appl Polym Sci, 2007,105(3):1267-1274.
[26] Sotto A, Boromand A, Balta S, et al. Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles[J]. J Mater Chemi, 2011,21(28):10311-10320.
[27] Zinadini S, Zinatizadeh A A L, Rahimi M, et al. Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe2O4/SiO2/PES nanofiltration membrane: A novel method for flux enhancement and fouling resistance[J]. J Ind Eng Chem, 2017,46:9-18.
[28] Li Q, Li Z K, Yu H, et al. Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane[J]. Desalination, 2013,327:24-31.
[29] Tang Y J, Xu Z L, Huang B Q, et al. Novel polyamide thin-film composite nanofiltration membrane modified with poly(amidoamine) and SiO2 gel[J]. RSC Adv, 2016,6:45585-45594.
[30] Xing L X, Guo N N, Zhang Y T, et al. A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification[J]. Sep Purif Technol, 2015,146:50-59.
[31] Zhang C F, Wei K F, Zhang W H, et al. Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for lowpressure nanofiltration[J]. ACS Appl Mater Interf, 2017,9(12):11082-11094.
[32] Zhu J Y, Tian M M, Hou J W, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane[J]. J Mater Chem A, 2016,4(5):1980-1990.
[33] Vatanpour V, Madaeni S S, Moradian R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. J Membr Sci, 2011,375(1/2):284-294.
[34] Vatanpour V, Madaeni S S, Moradian R, et al. Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes[J]. Sep Purif Technol, 2012,90:69-82.
[35] Vatanpour V, Esmaeili M, Farahani M. Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes[J]. J Membr Sci, 2014,466:70-81.
[36] Zarrabi N, Yekavalangi M E, Vatanpour V, et al. Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube[J]. Desalination, 2016,394:83-90.
[37] Li H B, Shi W Y, Su Y H, et al. Preparation and characterization of carboxylated multiwalled carbon nanotube/polyamide composite nanofiltration membranes with improved performance[J]. J Appl Polym Sci, 2017,134(36):14.
[38] Mahdavi M R, Delnavaz M, Vatanpour V, et al. Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes[J]. Sep Purif Technol, 2017,184:119-127.
[39] Yokwana K, Gumbi N, Adams F, et al. Development of functionalized doped carbon nanotube/polysulfone nanofiltration membranes for fouling control[J]. J Appl Polym Sci, 2015,132(21):12.
[40] Madaeni S S, Zinadini S, Vatanpour V. Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane[J]. Sep Purif Technol, 2013,111:98-107.
[41] 张兆利, 王 枢, 郭竹洁,等. 耐氧化芳香聚酰胺纳滤膜的研究进展[J]. 化工进展. 2011,30(10):2240-2246.
[42] Jensen J S, Lam Y F, Helz G R. Role of amide nitrogen in water chlorination: Proton NMR evidence[J]. Environ Sci Technol, 1999,33(20):3568-3573.
[43] Orton K J P, Soper F G, Williams G. The chlorination anilides. Part III. N-chlorination and C-chlorination as simultaneous side reactions[J]. J Chem Soc, 1928:998-1005.
[44] Hu D, Xu Z L, Wei Y M. A high performance silica-fluoropolyamide nanofiltration membrane prepared by interfacial polymerization[J]. Sep Purif Technol, 2013,110:31-38.
[45] Li H B, Shi W Y, Zhu H Y, et al. Effects of zinc oxide nanospheres on the separation performance of hollow fiber poly(piperazine-amide) composite nanofiltration membranes[J]. Fibers Polym, 2016,17(6):836-846.
[46] Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes[J]. J Membr Sci, 2009,343(1/2):189-198.
[47] Ding R, Zhang H Q, Li Y F, et al. Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability[J]. Chem Eng Sci, 2015,138:227-238.
[48] Basu S, Maes M, Cano-Odena A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. J Membr Sci, 2009,344(1/2):190-198.
[49] Echaide-Gorriz C, Navarro M, Tellez C, et al. Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Dalton Transact, 2017,46(19):6244-6252.
[50] Sorribas S, Gorgojo P, Tellez C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. J Am Chem Soc, 2013,135:15201-15208.
[51] Shao L, Cheng X Q, Wang Z X, et al. Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J]. J Membr Sci, 2014,452:82-89.
[52] Peyravi M, Jahanshahi M, Rahimpour A, et al. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J]. Chem Eng J, 2014,241:155-166.
[53] Wu M B, Lv Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016,515:238-244.
[54] Akbari A, Homayoonfal M. Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane[J]. Korean J Chem Eng, 2016,33(8):2439-2452.
[55] 孟季茹, 赵 磊. 无机纳米材料在聚合物改性中的应用[J]. 江苏化工. 2000, (11):35-38.
[56] 葛曷一, 王继辉. 纳米材料改性不饱和聚酯树脂的研究[J]. 玻璃钢/复合材料. 1999, (3):13-14.
[57] Qiang F, Wang G. Polyethylene toughened by rigid inorganic particles[J]. Polym Eng Sci, 2010,32(2):94-97.
[58] 王益庆, 张立群, 张慧峰,等.凹凸棒土/橡胶纳米复合材料结构和性能研究[J]. 北京化工大学学报(自然科学版). 1999,26(3):25-29.
[59] Wei Y, Zhang Y S, Gao X L, et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes[J]. Carbon, 2016,108:568-575.
[60] Wang J L, Gao X L, Wang J, et al. O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J]. ACS Appl Mater Interf, 2015,7(7):4381-4389.
[61] Rajesh S, Ismail A F, Mohan D R. Structure-property interplay of poly(amide-imide) and TiO2 nanoparticles impregnated poly(ether-sulfone) asymmetric nanofiltration membranes[J]. RSC Adv, 2012,2:6854-6870.
[62] Namvar-Mahboub M, Pakizeh M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Sep Purif Technol, 2013,119:35-45.
[63] Yang M, Zhao C W, Zhang S F, et al. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property[J]. Appl Surf Sci, 2017,394:149-159.
[64] Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater Chem, 2015,3(5):2065-2071.
[65] Wang J, Zhao C W, Wang T, et al. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J]. RSC Adv, 2016,6(85):82174-82185.
[66] Vatanpour V, Kavian M. Synergistic effect of silica nanoparticles in the matrix of a poly(ethylene glycol) diacrylate coating layer for the surface modification of polyamide nanofiltration membranes[J]. J Appl Polym Sci, 2016,133(33): 1-10.
下一篇:刺激响应膜及其研究进展